The Ramanujan identities under modular substitutions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Plouffe’s Ramanujan Identities

Recently, Simon Plouffe has discovered a number of identities for the Riemann zeta function at odd integer values. These identities are obtained numerically and are inspired by a prototypical series for Apéry’s constant given by Ramanujan: ζ (3) = 7π3 180 −2 ∞ ∑ n=1 1 n3 (e2πn−1) Such sums follow from a general relation given by Ramanujan, which is rediscovered and proved here using complex ana...

متن کامل

Finite Rogers-Ramanujan Type Identities

Polynomial generalizations of all 130 of the identities in Slater’s list of identities of the Rogers-Ramanujan type are presented. Furthermore, duality relationships among many of the identities are derived. Some of the these polynomial identities were previously known but many are new. The author has implemented much of the finitization process in a Maple package which is available for free do...

متن کامل

Variants of the Rogers-ramanujan Identities

We evaluate several integrals involving generating functions of continuous q-Hermite polynomials in two diierent ways. The resulting identities give new proofs and generalizations of the Rogers-Ramanujan identities. Two quintic transformations are given, one of which immediately proves the Rogers-Ramanujan identities without the Jacobi triple product identity. Similar techniques lead to new tra...

متن کامل

New Finite Rogers-Ramanujan Identities

We present two general finite extensions for each of the two Rogers-Ramanujan identities. Of these one can be derived directly from Watson’s transformation formula by specialization or through Bailey’s method, the second similar formula can be proved either by using the first formula and the q-Gosper algorithm, or through the so-called Bailey lattice.

متن کامل

Identities for the Ramanujan Zeta Function

We prove formulas for special values of the Ramanujan tau zeta function. Our formulas show that L(∆, k) is a period in the sense of Kontsevich and Zagier when k ≥ 12. As an illustration, we reduce L(∆, k) to explicit integrals of hypergeometric and algebraic functions when k ∈ {12, 13, 14, 15}.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1942

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1942-0006204-2